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Intro 
The modern data architecture holds a lot of promise 

for enterprises looking to tap into more data and fuel 

more downstream consumers, all while operating 

more efficiently and cost-effectively. However, for any 

of us who have worked with data over the past few 

years, we know that utopian state is often far from the 

reality.  

While there’s been no shortage of innovation - from 

the cloud services processing your data, to the elastic 

warehouses, all the way to the BI and data science 

tools - connecting and orchestrating the movement of 

data between these systems has been conspicuously 

absent from these advancements.  

The current state of the art in orchestration are 

workflow automation systems. Using these systems, 

you are responsible for designing the tasks, connecting 

them together via dependency relations, and passing 

them to a workflow automation system that manages 

the execution. This model puts the manual burden on 

you to manage the enumerable details within (and  

 

 

between) each task and ensure data is correct, often 

resulting in brittle pipelines that are expensive to run 

and maintain. 

There is an alternative: dataflow automation systems. 

This approach leverages algorithms to translate 

high-level specs into tasks and to schedule and 

execute those tasks. You’re responsible for creating 

and curating the high-level spec and now the dataflow 

automation system manages the legion of tasks 

required to implement your spec. 

In advancing orchestration, Ascend took the dataflow 

automation approach. We’ve seen this approach lower 

the design and maintenance costs while also 

improving the quality and reliability of resulting data 

pipelines, just as moving from assembly language to 

higher-level development languages has done for 

software. We’ll explore why we opted for this route by 

looking at more of the challenges and limitations 

within workflow automation systems, as well as 

compare and contrast both approaches overall.  
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What is Workflow Automation? 

Workflow automation systems schedule and 

execute a directed acyclic graph (DAG) of tasks. 

The system guarantees that tasks are only 

executed when their upstream tasks have 

successfully completed. 

In addition to this entirely asynchronous 

scheduling, a set of tasks—those having no 

upstream dependencies—are often scheduled to 

run on a fixed, static schedule, such as once an 

hour or once a day. 

Today, a large part of a data engineer's job is to 

design tasks that a workflow automation 

system can run. The engineer then designs a 

dependency graph such that these tasks run in 

an acceptable order. Finally, the engineer is 

responsible for configuring this automation 

system so that it runs periodically scheduled 

tasks when data should be available. In some 

cases, they may also have to manually trigger 

execution of tasks and graphs on historical data 

(ie backfills). 

 

The Emergence Of Workflow 

Automation 

Coinciding with the ubiquity of technologies that 

handle virtually unlimited volumes of data - such as 

scalable compute engines like Apache Spark and 

Apache Presto and flexible object storage like AWS S3 

and Google Cloud Store - came more complexity with 

how you work with all this data. For instance, when 

you query against distributed data, you need to 

manually partition data and then simplify your queries 

based on this partitioning (again, manually). Workflow 

automation systems gained popularity to help restitch 

these partitions. You can configure these systems to 

schedule the simplified queries to reflect your manual 

partitioning and your understanding of when new data 

drops. However, there remains a strong reliance on 

what can be defined and executed manually. Let’s 

break down the steps needed for pipeline 

development using workflow automation systems to 

better understand how this manual effort gets more 

intractable over time. 

Partitioning Design 

When working with data against these scalable 

technologies, the first step is to partition data so new 

and updated data is separated from older, unchanging 

or rarely changing data. The default here is usually 

date-based partitioning. 

Partitioning considerations start at raw ingestion. You 

need to know where the data will land, how events are 

separated into files, and the pattern used to name 

those files. Tradeoffs can arise here based on 

downstream usage requirements. For instance, if some 

data consumers require low latency insights, your 

ingest pipeline may create many small files. This, 

however, is often an anti-pattern for aggregation jobs 

and means you have to manually implement 

additional tasks to aggregate sets of small files before 

further processing. 

Additionally, events are typically stored in files based 

on the time the event was received by an ingestion 

pipeline. Since it takes time to transfer and land data, 

event timestamps and files do not line up. It’s virtually 

always the case that data for the end of the day (e.g., 

11:59PM on December 31st) will end up in a file for 

the next day (e.g., the midnight hour bucket for 

January 1st). You are responsible for anticipating this 

and designing for it, which typically means writing 

tasks that read wider windows of data and filter out 

events not relevant for a particular aggregation. This is 

always a heuristic: it implicitly embeds your 

assumptions based on expected patterns and 

schedules for worst case latency, even if typical actual 

latency is far less. 

You also need to anticipate how downstream 

dependent tasks will consume the results of upstream 
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tasks when designing partitioning. Let's take a simple 

example: an internet commerce provider that wants to 

track total transaction value per customer on a daily 

basis as well as rolling week-over-week total 

transaction value per customer. In this example, you’ll 

want to run two jobs: one for the daily aggregation 

and one for the week-over-week difference. That 

means when designing the daily job, you need to 

consider how the weekly job will read that data and 

the irregularity of the calendar (different months with 

different numbers of days, different numbers of days 

in different years). Some path layouts make this easier 

than others. 

Foreseeing and accommodating downstream task 

requirements gets progressively more difficult as data 

use grows and diversifies. 

Storage Plan for Intermediate Results 

For a pipeline, the location of the raw input data and 

location of resulting output data are both provided. 

But allocating and managing the location of 

intermediate data falls on you and is handled as part 

of the task and DAG design. 

In the prior example, you’ll need to run daily 

aggregations, store them temporarily, and then run 

week-over-week aggregations. Because of the 

running-week requirement, this data must be 

computed every day on the basis of multiple days of 

input.  

In practice, intermediate storage is often not well 

documented and can be difficult to manage, debug, 

etc. It’s not uncommon to have large amounts of data 

where dependencies are not easily identifiable, which 

can make it difficult to determine when data can be 

safely removed and more complex when future 

backfills must be accomodated.  

Write and Connect Tasks via Dependency 

Graph 

Once the above partitioning and storage are designed, 

you write the task templates and configure the 

workflow automation system to run them in the 

correct order.  

This effort entails:  

1. Reducing the high-level specification to a task 

template that produces a single output 

partition based on a subset of the input set. 

This can take several steps to select only the 

necessary partitions and simplify it down so 

only a particular task runs. 

2. Connecting the tasks with the parameters 

necessary to pass data from input to output 

locations 

3. Configuring the triggers that will cause the 

task to be scheduled, either 

a. Configuring the dependencies on 

upstream tasks so that the task is run 

when the upstreams complete 

successfully 

b. Defining a time-based execution so 

the task is run at regular intervals 

4. Creating the code necessary to send the task 

to the compute cluster, e.g., submit to a Spark 

cluster 

Scheduling is often subtly complicated. In the case of 

the daily aggregation task, you need to decide when to 

trigger the task based on the expected time that data 

should be available (remember all those ingest 

assumptions made at the start?). If data is dropped at 

the end of every hour, you might schedule the daily 

aggregation task to start at 2AM every day to account 

for: 

● Late data arriving in at midnight of the 

following day 

● The midnight hour data not being finalized 

until just before 01:00 that day 

● Some delay for finalization after the 01:00 

hour starts 
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The weekly rollup example has similar scheduling 

requirements plus it must wait until the daily rollup for 

each day is available. Again, this is based on an 

assumption of when the daily data will be available, 

often with an additional check that the data has, in 

fact, been completed with a retry mechanism if the 

data is not ready. 

The weekly rollup has the additional complication that 

it depends on the daily results for seven days, not just 

the most recent day. This dependency is often difficult 

to express in workflow automation systems, so it’s 

often just left out. This creates an implicit assumption 

that if yesterday’s data is available, all the previous 

days’ data is available. In normal operation, this is 

expected to be true. When anomalies occur, this may 

not be the case. Because the implicit assumption is 

not exposed through the workflow system, the system 

cannot enforce correct task execution order and 

incorrect data may be produced. 

Moreso, even normal operations do not fulfill this 

assumption, in particular, backfills. When backfilling 

historical data, it would be very common to compute 

daily aggregations in reverse chronological order - with 

the most valuable data likely to be the most recent. 

However, this is completely backwards of what the 

implicit dependency requires. This makes backfills 

laborious and brittle with the result that, though the 

data would be valuable, most of us choose not to do it.  

Monitor and Respond to Failure  

Once everything is deployed and running, both the 

entire workflow automation process as well as the 

individual tasks must be monitored, and alerts are 

created if things go awry. It's a fact of life in big data 

systems that failures happen. "It is possible to fail in 

many ways…while to succeed is possible only in one 

way" rings true in workflow systems: 

• Data sometimes arrives late 

• Previously provided data gets restated 

• An external service necessary for task execution 

becomes unavailable 

• Input data organization changes 

• Input data schemas change 

• One or more more task definitions change and 

downstream tasks subsequently fail 

Anyone that has worked in scalable data systems has 

experienced at least one of these. Many of us have 

experienced all of them. Multiple times. 

In the simple case of an ephemeral error (e.g., a 

required external service is briefly unavailable), 

corrective action can just be retrying a task. Many 

workflow systems can retry failed tasks, though 

without the context of the specific error, they will retry 

persistent errors (e.g., bad SQL) just as they do 

ephemeral errors. For persistent errors, it’s up to you 

to determine root cause and implement the task or 

dependency graph changes necessary to correct the 

failure. 

On its own, correcting for a single task failure can be 

laborious but is generally tractable. The complexity 

increases vastly as the size and number of workflows 

increases. 

Restated data (data that was incorrect on first access) 

is particularly insidious. When first dropped, it is 

considered valid data so all downstream tasks can run 

to completion. When the incorrect data is detected 

(which can take days or sometimes weeks), it's 

necessary to identify and rerun tasks that have read 

that data. It’s also necessary to identify the transitive 

downstreams of these tasks and rerun them, as well, 

while preserving the necessary dependencies. In 

practice, this process is so laborious, if it’s done at all, 

it is done only for a limited set of manually identified, 

high-value results. This means the accuracy of the rest 

of the data in the system remains unknown 

indefinitely. 

Writing dependencies that will hold correct under all 

conditions is difficult. In response, we consider the 
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most likely case (new data comes in accurately and on 

time, upstream tasks are triggered and complete 

successfully within an expected time window) and 

write the dependencies necessary to get correct 

results under these conditions. While this simplifies 

immediate design tasks, it makes it difficult when 

atypical situations arise. The resulting system can be 

brittle in the face of these anomalies, requiring 

increasing manual remediation over time. 

Why Not Just Improve Workflow Automation 

Systems? 

Workflow automation systems only know that a 

specific task can be run if and only if its 

upstream tasks have run successfully. These 

systems do not know why they must run the 

tasks this way. They don't know why it's useful 

to run these tasks. They don't even know what 

the (side)effects of a single task are. 

Formally, this workflow model is   referentially 

and  semantically opaque . 

Referentially opaque means the workflow 

system does not know what a task reads as 

inputs or what it writes as outputs. 

Semantically opaque means the workflow 

system does not know how the inputs of a task 

are transformed into its outputs. As a result, it 

cannot consider task optimization. 

Opacity also exists between the system and the 

individual tasks. Just as the workflow system 

has no representation of what each task does, 

the tasks have no representation of the 

surrounding context in which they run. They 

don’t know what tasks create the data they're 

reading or what tasks will read the data they're 

writing. This prevents the individual tasks from 

optimizing themselves. For example, if an 

upstream task uses a GROUP BY clause to create 

a dataset, the values selected from that GROUP 

BY must be unique. But any downstream tasks 

don’t see those semantics and thus cannot 

optimize its query plan based on this property. 

 

Data Engineers as the 

Compilers 

Due to this opacity, the process of taking the high-level 

description of the problem, reducing it to a number of 

small steps, and scheduling those steps falls on you as 

the data engineer. If this process sounds familiar, it’s 

what compilers and query planners have been doing 

for decades. In this workflow automation world, you 

are actually acting as optimizing compilers.  

But even the best of us make mistakes, especially 

during anomalous conditions. This is no slam on 

engineers. This whole development process is based 

on hard-coded heuristics and assumptions, and 

manual compilation is: 

• Tedious 

• Error-prone 

• Difficult to do optimally 

On the other hand, computers make great compilers. 

They don't mind tedium. They don't mind considering 

lots (and lots) of execution alternatives. Additionally, 

when the problem specs change, the compiler can 

easily be rerun. Whereas, with manual design, it’s up 

to you to understand the current system and the 

implications of the change in order to respond. 

Writing less code and leaving more to compilers will 

virtually always result in more correct code in a 

shorter amount of time (and thus at a lower cost). It 

doesn’t hurt that computers are way cheaper to scale 

as well.  
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Dataflow Systems: Focus on 

Data, Not Tasks 

Instead of leaning on engineers to act as task 

compilers, dataflow automation systems leverage 

algorithms to handle the translation of higher-level 

specs into scheduled tasks. What’s compelling about 

this approach is not only the manual relief it provides 

to us, but also that these systems can view  data  as the 

primary entity and, thus, only generate tasks as a 

means to an end. 

In contrast to the previous workflow systems, dataflow 

automation systems are  referentially  and  semantically 

transparent , with the specification completely 

describing the inputs, outputs, and transformations 

that computation requires. All transformations are 

seen as high-level representations of data and these 

systems extract the semantics from the specifications 

provided.  

The transparent descriptions mean these systems have 

awareness of the context regarding dependencies and 

input data, so they can now optimally generate and 

schedule tasks to materialize the correct result set. 

Moreso, these systems can do this in the face of 

changing inputs and transformations. Similar to what 

we’ve seen with database query planners, these 

systems will make conservative assumptions during 

execution by default if the necessary semantics cannot 

be extracted.  

With this approach: 

• The correctness of resulting task graphs is 

(modulo bugs) guaranteed 

• The optimality of generated task graphs is 

dependent on the algorithms used. Generated 

tasks graphs may not always match the 

optimality of manually designed task graph just 

as compiled code may not be as optimal as 

hand-generated assembly language. While 

algorithms will improve with time, the cost of 

manual generation will not and will become an 

increasing bottleneck. 

Let’s now look at what pipeline development is like 

when using dataflow automation systems. 

Partitioning Design 

Since a dataflow automation system models the 

semantics of the transformation provided, it’s well 

positioned to automatically choose the partitioning 

scheme.  

The dataflow automation system uses algorithms to 

analyze the semantics of the query, determine the 

execution plans to produce the correct results, and 

select the lowest cost path. These systems can also 

pull in available metadata to make these choices more 

optimally based on a larger consideration set.  

For example, based on known semantics, these 

systems can choose to run a cheaper map operation 

over a costlier full reduction operation when it’s 

known that the map will also produce the correct 

result. But when data volumes are small, the cost of 

these two operations switches and these systems can 

dynamically opt for a full reduction over the now 

costlier map operation.  

Storage Plan for Intermediate Results 

Similar to how Spark is responsible for managing the 

storage of intermediate results during the execution of 

a Spark job, a dataflow automation system is now 

responsible for managing storage of results between 

tasks. Given broad configurations, such as buckets in 

object stores, the dataflow system handles the actual 

configuration of data location for each task. The 

format of the locations or paths within a bucket have 

no impact on your development, which frees you from 

this complex and error-prone responsibility. You no 

longer need to code where every task output should 

materialize or configure dependent tasks to write/read 

from these locations. 

When the specs change, a dataflow system creates 

new locations for the resulting transforms and handles 

 

 
 6 

 
 



 

purging the old data at a future point. This guarantees 

the currently stored value is the desired value, 

eliminating the need for manual tracking of which task 

versions were most recently run to determine as 

much. 

Additionally, since dataflow automation systems are 

semantically transparent and understand the context 

of the transformations being performed, it’s possible 

in these systems to trivially deduplicate redundant 

operations. For example, if someone on your team 

designs a transformation that you already built, these 

systems can identify this, materialize the existing result 

set, and not execute requests for the same 

computation multiple times. This operation is 

extremely useful during development cycles since you 

can copy the transformation specs and make small 

changes without triggering costly recomputation of 

unaffected data. This is only possible when storage 

planning is also automated. 

Write and Connect Tasks via Dependency 

Graph 

Dataflow automation systems "compile" high-level 

data transformation specifications into tasks that 

implement them and produce the correct data results. 

We’ve already described that, as part of that process, 

they automatically perform the partitioning design. 

Closely tied to this is automatically generating the 

necessary task templates that then implement the 

chosen partitioning. 

More concretely, in a dataflow automation system 

with SQL as the high-level specification language, the 

system will examine the spec in order to create an 

optimal query plan. Depending on the semantics of 

the SQL, it will determine whether to run: 

• A separate task for each individual input 

partition/file as they are created or updated 

(Map Operation) 

• A single task whenever any input partition/file is 

created or updated (Full Reduction) 

• A task for affected output partitions when an 

input that affects the result is created or updated 

(Partial Reduction) 

In workflow automation systems, the burden of 

translating this into resulting task templates and 

deciding optimal query plans based on the tasks at 

hand falls on you. To give credit where credit’s due, 

Spark is able to do this within a single task. However, 

only dataflow automation systems are able to do the 

same type of transformation between or across tasks, 

because they are referentially transparent - making it 

relatively trivial to extract the dependency relations 

and optimally generate execution plans based on 

inter-task relations. 

Monitor and Respond to Failure  

While you still need to monitor and mitigate errors 

with dataflow automation systems, the automation of 

task creation and execution means these systems can 

offload a vast majority of the monitoring. 

A dataflow automation system is responsible for 

monitoring all the tasks it schedules for execution. 

Through its semantic understanding of the transforms, 

it is in a better position to actually interpret the cause 

and impact of errors, and then respond to a range of 

recoverable errors accordingly.  

For example, if a task reports that a required input file 

is not present, the dataflow automation system can 

automatically schedule recomputation of the missing 

element and, upon success, trigger re-execution of the 

failed task. It doesn’t need to know the cause of the 

missing input data; it just focuses on generating 

correct data outputs for the high-level transform. 

When task failures are detected that require manual 

intervention, it is also the responsibility of these 

systems to interpret the failures in the context of the 

high-level specification provided and report them back 

to you at that level, not the task level. 

For example, if incorrect data is received, it can cause 

a task to fail. With a workflow automation system, you 

get informed of the task failure and then you examine 
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the task to determine how it failed, the root cause of 

the failure, and assess the impact of this failure to the 

data and downstream dependencies. In a dataflow 

automation system, a task failure is simply attributed 

to the data it impacts and you are directly informed of 

the inability to compute a dataset. Details on the task 

failure are inconsequential here, so you get to focus 

solely on the impact to the data. Moreover, since all 

dataset dependencies are tracked by the dataflow 

automation system, the impact of this failure on 

downstream data computation can be immediately 

provided for faster remediation.  

 

 

Comparing and Contrasting the Approaches 

Workflow Automation Systems 

Pros Cons 

1. Maturity 

 These systems have been around for decades with 
new ones arising regularly. This approach is well 
understood and incremental improvements 
continue to be developed. 

2. Flexibility 

 These systems can be configured to automate 
virtually any task that can be expressed 
programmatically. Since they do not require any 
representation of the semantics, inputs, or outputs 
of tasks, there is often no limitation on the 
programming language, model, or tool used to 
implement tasks. 

3. Simplicity of Dependency Semantics 

 Dependency representations in workflow 
automation systems are simple and 
straightforward to write. Many systems can render 
dependency graphs as images to help you clearly 
understand the relationships between tasks. 

1. Task-Based State Management 

 In these systems, graphs are expressed via the 

state and dependencies of individual tasks. This 

means the burden of matching that to the datasets 

is left to you as the engineer. Since tasks are 

continuously being created and executed, the 

volume of this state information grows rapidly with 

time. This also may require you to prune state data 

regularly to avoid performance issues. 

2. Data Provenance and Lineage Limitations 

 Since workflow systems track task state only, the 

state and lineage of data produced by these tasks 

must be manually inferred from task state, raw 

task logs, and task definitions. Determining data 

state this way is time consuming, tedious, and 

error prone. This is especially true as the size and 

number of graphs grow. At larger scale, these 

systems don't track the interdependence of all 

tasks but instead track the dependencies between 

entire graphs. Generally the dependency tracking 

in these cases provides even less detail, making it 

even more challenging to manually infer data 

state. 

3. No Task or Resource Optimizations 
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 As all tasks are opaque to workflow automation 

systems, there is no ability to implement 

algorithms to optimize computation or execution. 

For example, they cannot rewrite task 

dependencies to pre-filter data before a 

transformation. Since these systems don’t model 

the computation a task is performing, it also has 

very little ability to estimate the computational 

resources required by a task and thus optimize 

concurrent tasks. This means it’s up to you to 

implement scheduling policies, which can result in 

under-utilizing or over-committing resources. 

4. High Supportability Costs 

Failure is inevitable at scale. When errors do occur, 

they can only be detected by observing failures 

after individual tasks run. Diagnosis then requires 

manual effort and intervention in locating and 

reading task logs. Additionally, the hard-coded 

assumptions made based on data at the 

point-of-initial development will likely change over 

time. This not only causes an increasing number of 

failures but also becomes more difficult and costly 

to track and resolve these errors in growing, legacy 

codebase.  

5. Extensibility Limitations 

 Workflow systems do not model the semantics of 

tasks, thus, they cannot provide any features that 

validate the consistency and correctness of the 

relationship between two tasks. Even with an open 

model of the transforms and dependencies, the 

precise semantics of the transforms are often not 

reflected in the model in a consumable way, which 

blocks the extensibility to more tools. 
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Dataflow Automation Systems 

Pros Cons 

1. Data-Focused Management and Lineage 

Dataflow systems reflect entire data sets as an 
organized set of objects and manage the 
relationships between the objects both within 
individual tasks and across the overall dataset. This 
means that you generally only need to consider 
the overall dataset when designing and managing 
specs and let the dataflow system manage the 
lower level details, allowing you to  design and 
maintain far larger, more complex systems. 

2. Automation Optimizations 

With a transparent understanding of 
transformations, dataflow automation systems can 
algorithmically rewrite graphs to produce the 
same results faster or at lower costs. Similarly, 
since they automatically generate the individual 
tasks necessary to implement the high-level 
transforms, they can dynamically create cost 
models to manage the execution of tasks based on 
available compute resources to optimize utilization 
and performance tradeoffs. 

3. Reduced Supportability Costs 

These systems are able to monitor task execution 
and automatically remediate a large proportion of 
task failures without requiring manual 
intervention. With less code needed to create the 
graphs, this also decreases brittleness and the 
number of potential errors, and makes it more 
manageable to maintain over time.  

4. Rich, Extensible Metadata Model 

To achieve much of the automation and 
optimizations, these systems must maintain rich 
sets of metadata representing both the high-level 
system specifications as well as the low-level 
storage objects and tasks. The richness of this 
model allows these systems to do extensive 
correctness and consistency checks. This metadata 
is also available for other tools to tap into or 
develop against.  

1. Difficult Manual Optimizations 

Similar to other high-level systems, it’s more 

difficult to specify low-level optimizations that the 

dataflow automation system cannot itself 

generate. Often the abstraction layer provided by 

these systems makes it challenging to express 

lower level optimizations. In general, the quality of 

optimization will vary across dataflow systems, just 

as it does across databases and compilers. This can 

be expected to improve over time but may not 

presently match manual task design 100% of the 

time.  

2. Limited Flexibility 

These systems are purpose-built to move data 

through a graph, not run arbitrary tasks. While a 

workflow automation system can be equally 

capable of computing a set of data transformation 

tasks or acting as a next gen cron, a dataflow 

automation system is only well-tuned for the 

former. 

3. Effort to Represent High-Level Task Semantics 

 Much of the power of dataflow automation 

systems comes from the semantic transparency. In 

many cases, such as with SQL, this is simple to 

define in terms of inputs and semantics. For 

arbitrary code, it can be more difficult to extract 

semantics. To maintain the benefits of 

transparency, it can be necessary to manually 

provide a description of the I/O and behavior of 

tasks, which can increase the resulting effort 

required. 
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Conclusion 
At Ascend, we believe it’s the data that matters. Not 

the tasks, or the scheduling, or the maintenance. This 

is why we opted to develop a dataflow automation 

system. This allows you to combine declarative 

configurations with automation to build and run 

pipelines with less code and less breaks. If you’re 

interested in giving it a try, sign up for a free trial at 

https://www.ascend.io/get-started/  

 

About Ascend 

Ascend provides the world’s first Autonomous 

Dataflow Service, enabling data engineers to build, 

scale, and operate continuously optimized, Apache 

Spark-based pipelines with 85% less code. Running 

natively in Microsoft Azure, Amazon Web Services, and 

Google Cloud Platform, Ascend combines declarative 

configurations and automation to manage the 

underlying cloud infrastructure, optimize pipelines, 

and eliminate maintenance across the entire data 

lifecycle. For more information about Ascend, visit 

www.ascend.io.  
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